skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Costa, Rodrigo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In the United States, assistance from the Department of Housing and Urban Development (HUD) plays an essential role in supporting the postdisaster recovery of states with unmet housing needs. HUD requires data on unmet needs to appropriate recovery funds. Ground truth data are not available for months after a disaster, however, so HUD uses a simplified approach to estimate unmet housing needs. State authorities argue that HUD's simplified approach underestimates the state's needs. This article presents a methodology to estimate postdisaster unmet housing needs that is accurate and relies only on data obtained shortly after a disaster. Data on the number of damaged buildings are combined with models for expected repair costs. Statistical models for aid distributed by the Federal Emergency Management Agency (FEMA) and the Small Business Administration (SBA) are then developed and used to forecast funding provided by those agencies. With these forecasts, the unmet need to be funded by HUD is estimated. The approach can be used for multiple states and hazard types. As validation, the proposed methodology is used to estimate the unmet housing needs following disasters that struck California in 2017. California authorities suggest that HUD's methodology underestimated the state's needs by a factor of 20. Conversely, the proposed methodology can replicate the estimates by the state authorities and provide accounts of losses, the amount of funding from FEMA and SBA, and the total unmet housing needs without requiring data unavailable shortly after a disaster. Thus, the proposed methodology can help improve HUD's funding appropriation without delays. 
    more » « less
  2. Post-disaster housing recovery models increase our understanding of recovery dynamics, vulnerable populations, and how people are affected by the direct losses that disasters create. Past recovery models have focused on single-family owner-occupied housing, while empirical evidence shows that rental units and multi-family housing are disadvantaged in post-disaster recovery. To fill this gap, this article presents an agent-based housing recovery model that includes the four common type–tenure combinations of single- and multi-family owner- and renter-occupied housing. The proposed model accounts for the different recovery processes, emphasizing funding sources available to each type–tenure. The outputs of our model include the timing of financing and recovery at building resolution across a community. We demonstrate the model with a case study of Alameda, California, recovering from a simulated M7.0 earthquake on the Hayward fault. The processes in the model replicate higher non-recovery of multi-family housing than single-family housing, as observed in past disasters, and a heavy reliance of single-family renter-occupied units on Small Business Administration funding, which is expected due to low earthquake insurance penetration. The simulation results indicate that multi-family housing would have the highest portion of unmet need remaining; however, some buildings with unmet needs are anticipated to be able to obtain a large portion of their funding. The remaining portion may be filled using personal financing or may be overcome with downsizing or downgrades. Multi-family housing would also benefit the most from Community Development Block Grants for Disaster Recovery (CDBG-DR). This benefit is a result of modeling the financing sources, that CDBG-DR is available, and that many multi-family buildings do not qualify for other sources. Communities’ allocation of public funding is important for housing recovery. Our model can help inform and compare potential financing policies to allocate public funds. 
    more » « less
  3. Residential damage from major disasters often displaces local residents out of their homes and into temporary housing. Out-of-town contractors assisting in post-disaster housing reconstruction also need housing, creating additional pressure on the local housing stock. Communities should thus prepare for a surge in temporary housing demand to minimize the impact on the local residents and to expedite housing recovery efforts. Computational models can support recovery planning. This article introduces an agent-based simulation framework to estimate the workforce demand and the joint temporary housing needs of contractors and displaced households. The main agents are households seeking to repair their homes, local contractors, and out-of-town contractors. Out-of-town contractor agents come into the community if the labor and housing markets are favorable. The framework can be used to evaluate the resulting challenges and benefits of interventions aimed at attracting out-of-town contractors to expedite housing recovery. We present a case study on the housing recovery of the city of San Francisco after hypothetical M 6.5, M 7.2, and M 7.9 earthquakes. A shortage of contractors is shown to bottleneck the reconstruction if no out-of-town contractors are recruited. Conversely, out-of-town contractors increase the likelihood of temporary housing shortages. These results highlight the need to plan for shortages of reconstruction labor and temporary housing during recovery. 
    more » « less